
?4.
LA.~1~.78-1427

(10s
c

TITLE: AN IMPLEMENTATIONOF THE ACM/SIGGRAPHPROPOSED
GRAPHICS STANDARDIN A MULTISYSTEMENVIRONMENT

AUTHOR(S):

SUBMI~ED TO: slGG~H 178

Richard G. Kellner
Theodore N. Reed
Ann V. Solem

~y acceptmncc of thin article for publlcatlon, the
publi~her recognlrse the (.hvernmrnt’s (Ikerw)rights
Inanycopyrlght mtdlheGovernment undltmauihorlwd
rcprementutlvee hnve unremtrlcted right to reproduce In
whole or in port dd srticle under ●y copyright
mcumd by the publioher.

Da

The Lon Alnmos Sclentltlc L~boratory reque~ts that the
publlnher ldentl@ this mtlcle at work performed under
ths ●uspices of the USKRIIA.

Iamos
Hc laboratory

of tho University of California
LOS AlAMOS, NEW MEXICO B7544

An Ailirmdivc Action /Equnl Opportunity [mploye~
~ON OF TIIliJDOCUMENT IS UNLIMITED,.

\

(!
\\

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project
Los Alamos National Laboratory Research Library
Los Alamos, NM 87544
Phone: (505)667-4448
E-mail: lwwp@lanl.gov

AN ItlPLEtfF.NTATIONOF THEACtl/SIGCRAPHPROPOSED
IN A MJLTISYSTEttENVIROIWENT

ABSTRACT

Richard G. Kellner i
Theodore N. Rred

Ann V. Solem -
Los Alamos Scientific Laboratory

P.O. Box 1663, MS-272
Los Alamos, New Hexico 87545

Los Alamos Scientific Laboratory (LASL) has
implemented a graptrics system designed to support
one user interface for ●ll graphics devices in all
operating ●nvironments at IX3L. Thr Consnon Graph-
ics System (CGS) viii support Level One of the
Rraphics standard proposed by the ACtl/SICGRAPH
Graphic Standards Planning Coaanittee.

CCS is available in aix operating environ-
ments of two different word lengths and supports
four types of graphics devices. It can ge-crate a
pseudodevice file that may be postprocessed and
edited for a particular graphics device, or it can
generate device-specific graphics output directly,
Program overlaying and dyoamic buffer sharing are
also supported.

CGS is structured to isolate operating system
dependencies and gr)phics device dependencies, It
is written in the WTFOK (RATional FORtran)
language, which supports control flow statcmetlts
and macro expansion, CGS ia maintained as a sin-
glr source program from which each version can be
●xtracted automatically.

Key Words and Phrasea: portability, stan-
dards, compnter graphica, device-independent
graphics, pseudodevice.

1.

tory
its,

CR Categories: 4.22, 8.2

INTRODUCTION

Since 1957, the Los Alamos Scientific Labora-
(fML) haa been involved in computer graph-

pioneerinjt work in color computer output rai-
crofilm and other areas. Currently, LASL has nine
large-scaie computers, several hundred Tektronix
4010-series graphics terminals, four computer out-
put microfilm rerordera, an Evnns and Sutherland
Picture System 2 graphica system, ●nd numwous
smsll computers and other 8raphics equipment, The
computers ● rc run 24 houra per day, 7 days per
wrrk, with ● mixtur~ of jobs, including ones that
may sonsume ●ll the av&iIablc resources of ● lnrgt!
computer for hours.

Thu gradllal dvvrloprnent of gr,~phics ,softwarr!
titI.ASI. has rcsultod in ● latgp collection of rllf-
frrcut capahilitirs and rlitlrrrnt user jnterfaccs

GRAPHICSSTANDARD.

for each operati~g system ●nd xratiics device.---
l~ratioi p-mgrara mainte-Software maintenance, app .-

nance awd conversion, and user education have re-
qui red ●xtensive effort that could be reduced by
one unified graphics system. Berause ●xisting
systems, such as GINO-F [4] ●nd GPGS [3], were not
suitable for our applications, we designed and im-
plemented our own.

Late in 1976, we began implementation of the
Common Graphics System (CC3). By.late 1917, CCS
was operational in six operating environments, on
computers of two different word lemgths, ●nd was
supporting four types of graphics devices. Each
operdting enlJironme~t differs in computer
hardware, operating systems, ●nd compiler subsys-
tems, yet the graptlics interface provided by CCS
is identical.

2. CAPABILITIES

CGS was pattern~d after the AC!l/SIGGRAPHpro-
posed standard for computer graphics software [)],
The proposed standard has four levels of capabili-
ty : basic, bu!fcrcd, interactive, and complete.
The initial goal of CGS was to implement the basic
level for the graphics devices at LASL. Subst-
rnlen* versions are planned to support the buffered

ractive levels, with ● long-~rm objective
ot a+porting all four levels.

Included in th~ t,.asic level of support ● re
four classea of functional capability: output
primitives and primitive ●ttribute; viewiut
transformations for both two ●nd three dimensions;
control functions necenaary to uae * system; ●d
non-ret~ined segments, The subsequent levels of
support will include: re!.aincd segments; dyrrsmic
seltment attributes; input primititea; ●rd tmtg~
transforms,

Additional capabilities are ne~ssary to SUp-
port the more importnnt LASL application programs.
Tbrse arc nongraphic control capabilities that
must be provided as part of the graphics system.
These are deacrib~d below, The lppeedix contains
a list of ttreaecontrolfunctions ●md the propoted
SIGGRAPHcontrol functions with which they iD-
teract,

2.1 Progrum Overlaying

To allow applicntiun programs to overlay CGS

routines with the application program, we have
provided two control functions.

● ✎ A function to force global varirblea to be
●llocated in the non-overlayed portion of
Demory .

b. A function to ●stablish or sever linkage to ●

~raphics device driver residing in ●n over-
lay . With our implementation of CGS ●nd our
operating environments, it is necessary for
the application program to establish linkage
to a graphics device driver upon ●ntering ●n
overlay ●nd to sever linkage upon exiting the
overlay. No view surface raay be selected un-
less it is ●ssociated with 8 gr~phics device
that is linked.

2.2 Dynamic Buffer Allocation

Application programs must be able to allocate
graphics buffer space dynamically to make the
memory space available to the program when it is
mot being used for graphics. Two functions have
been provided for this purpone.

a. A function to ●ssign ● buffer for use by s
view surface, T% buffer is unavailable for
use by the application program when it is ●s-
signed to the view surface.

b. A functi(n to unassign a buffer. This forces
the Cn”itents of the buffer to be written to
disk or to an on-line graphics device. Tbe
VICW surface cunrlot be selected when ● buffer
is unassigned. The buffer becomes available
for ust by the app:

2.3 Additional Goals

In addition to the
following were goals gu.
mentation of CGS.

ication program,

above capabilities, the
ding the design and imple-

a.

b.

c.

d.

3.

the

To provide an identical interface to ●ach of
the graphics device drivers.

To load only the graphics device d:ivers re- ,
quested by the ●pplication program,

To maintain the graphics routines and ●ll the
graphics device drivers in the same object
library.

To support a paeudodevice (i.e., ● device-
independent graphics file) [2] that could be
postprocessed to any 8raphics device. This
●llows graphics to be previewed ●nd edited
before specifying ● 8raphics device for final
output .

sTRucTllR&

The structure of CGS (Fig. 1) was ●ffected by
above functional requirement, and design

goala.

3.1 Device-ind~pendent Graphica

This module supports the functions described

in Level On~*of the SICGRAP}Iproposal [1]. These
routines generate grtiphics commands in c common

-+———— otVICf $[UCTION
ANO CON7ROI,

L~~DRIVER RIVER ORIVfR . . .

OWfR
Drvlcts

“Pwoo DEVICE FR80 TEKTROMX
flu con TERMINALS

Fig. 1. Structure of CGS.

format for ●ll ttie graphics device drivers, in-
cluding the pseudodevice, and interface directly
to the device selection t.ontrol module. The world
coordinates ● re processed by the viewing transform
into normalized device coordinates in the range of
the current normalized device coordinate space.
They are then directed to the device selection
control module.

3.2 fiultiple View Surfaces

CGS supports -vuItipIe view surfaces for mul-
tiple devices, I, luding multiple view #ucfsces
for ● single device, aa provided for in the SIG-
CRAPH proposal. Other graphics packages ● t LASL
have snowed ●pplication to generate ● movie ●nd
slides for the same device at the same time. We
have generalized this capability to generate in-
dependent streams of graphica for various graphic
devices, just as a program can have ●ny number of
independent input or output files far nongraphics
devices.

3.3 Device Driver Linka8e

All the graphica primitive routinea call ●

single modulr, ‘he device selection control
module, and pnss the graphics command in ● cOtm’Qon
fc?mat similar to the pseudodevice format [2].
This module calls the linked aevice drivers, Pasa-
in~ the pseudodcvice command ●long. The ●ppltca-
tion pro~ram must nam. all the device driv~rs that
may be needed, and only those will be loaded.
This is necessary because all of our loaders are
static overlay loaders, Th~ drivers may all re-
side in memory at the same time, or the ●pplica-

Lirn program may overl.ly drivers with other
ro~clnes. Dlivers not in men.~ry must be unlinked;
dr.vers in memory may be linked or unlinked.
Since all device drivers may be in memory simul-
taneously, all device driver routines have unique
names.

3.4 Graphics Device Drivers

Each devi?e driver generates device-specific
information. It transforms the normalized device
coordinates to the coordinate space of the graph-
ics device. Each device driver checks for all
view surfaces that are ussigned to it and sends
the plotting information to each view surface that
is currently selected. This is accomplished by
maintaining. ● separate workspace containing vari-
ables and working storage for each view surface.
Thus , “output-only” device drivers write to ●

separate file on disk for ●ach selected view Sur-
face. This capability could also be used to drive
several terminals of the same type if the operat-
ing environment can support multiple terminals per
job.

4. ItfPLEtfENTATION

Important implementation considerations were:
portability; maintainability; compatibility vith
an existing plotting package; and a modular imple-
mentation.

4.1 Portability

The biggest problem in portability was caused
by tlIt, lack of any standards in system interfaces.
Capabilities such as logical and shifting opera-
tions, bit and byte packing, character set cnnver-
slon, in-core formatted data conversion, and joh
and system inquiries, are system functions that
are sufficiently well understood to warrant some
stnndtirdlzation across operating environments. We
developed one system-independent interface to the
oprrat ing environments. To move to a new ope:at-
ing environment, only the routiws defining that
interface need be rewritten.

In addition to the system functions mentioned
shove, we def.ned a system-independent 1/0 inter-
face for creating a file; opening and closing a
path from the program to a file or to an on-line
?raphics device; disposing a file to its ultimate
destination, such as an off-line graphicc device;
and reading and writing any number of bits.

At LASL we are required to generate a ftraph-
ics file in one operating environment and read it
in another operating environment. In order to
eliminate conversions between these environments,
all graphics files have tbe same format. Each
file has an indrx indicating where physical record
marks are to be inserted, because some graphics
devices require a particular structure to the phy-
sical recnrds or to an input graphics tape, The
index also records frame ●ddresses to facilitate
editing and postprocessing.

4.2 Maintainability

CCS exists ~s onc rna?ter source program, from
~ltirh a v:rsion for cacti oprrating environment can
hu extractwi. ‘f’his eosures uniformity in the

Rraphics system in all operating environments.

Two types of preprocessing are used to ● s-
tract each versinn from the master source.

a. All system-dependent and device-dependent
quantities, such as computer word size,
graphics device command size, ●nd wtput
buffer size, arc set with macros. Prepro-
cessing with the right set of macro defini-
tions causes all the quantities to be applied
throughout the source program.

b. The modules that define the ●yscem-
independent interface must be different for
each operating environment. Those modules
that have been optimized with in-line logical
and shift operations also have to be dif-
ferent. This conditional compilation is
achieved by fiagging each system-dependent
statement with a system ID, and preprocessing
to delete ●ll lines that do uot belong to the
desired version.

We use the RATional FORtran (RATFOR) lang~age
from Bell Laboratories 15,6]. The RATFORprepro-
cessor outputs ANSI standard FORTRAN. It supports
concrol flow statements, such as IF/ELSE ●nd
WNILE, and also bas a limited macro capability.

The project librarian generates the graphics
system for all operating environments--compiling;
building libraries and utilities; testins; savitts
all listings on microfiche; keeping records;
releasing the new libraries and utilities for pub-
lic use; and keeping backup copies. The librarian
uses procedure files and macros so that each major
step can be easily performed.

4.3 SC-4020 Emulation

There is a tremendous investment at LASL in
application programs that produce graphics output
for the SC-4020 microfilm recorder. Conversion of
these programs to run under CGS had to be mini-
mized, so we rewrote the SC-4020 primitive
routines to call the CGS primitives. Existing
high-level routines and application programs have
gained portability acrosa operating environments
and graphics devices with almost no conversion of
the graphics portions of their codes.

4.4 Modular Implementation

f)ur software implementation called for in-
stalling a minimum version of CGS, suitable for
use by production programs in all operstin8 en-
vironments. {The first release of CGS was ● two- ,
dimensional system, which supported only the pseu-
dodevice file, and included the SC-4020 ●mulation
routioes. A postprocessor supporting several of
our graphics devices was writtez utilizing exist-
ing graphics software. Once operational, CGS was
nptimized and enhanced uniformly in all opecating
●nvironments and implementation of device drivers
suitable for use directly with CGS wss begun.

5. cONCLUSIONS

Our initial objective WdS tO impltwent
device-indeoendcrit graphics in a portable [Jshioll
to support existing application profirams in nev

and existing operating environments at IJiSL. The
conversion of rxlsting high-level graphics
routines to use CCS brought bidesprcad availabili-
ty quickly and gave many existing application pro-
Rrams ●ccess to a vartety of graphics devices and
operating environments. The resulting user feed-
back bas been valuable, ●specially in the ● reas of
portable software and ascertaining user needs for

improved high-level graphics.

Writing the system with portability in mind
and then looking at efficiency has ?esulted in
several modifications to our portability tech-
niques, primarily to improve efficiency.

Level One of the SIGGRAPH proposal has been
sufficient to support the majority of our existing
applications. The additional device driver con-
trol functions we have provided have enabled CGS
to support several of our larger, more important
applications. It will soon be necessary to sup-
port a Level Three implementation to provide in-
teractive graphica using CGS.

As of ●arly 1978, four and one-half man-years
have been expended in the development, documenta-
tion, and maintenance of a partial Level One im-
plementation of the SIGGRAPH proposal in six
operating environment:. This also includes the
conversion of 9000 lines of high-level graphics
routines and many hours of user education and con-
sulting.

6.

6.1

6.1.1

6.1.2

6.1.3

~.~

b,~,)

APPENDIX

Initialization and Termination

ALLOCATE-CLOBALS{)

This function allocates CGS global
variables. The allocation occurs wherever
the routine is loaded. This function may
be called anytime.

Errors: None.

INITIALIZE-CORE (LEVEL)

This function initialize the core.
Except for ALLOCATE-GLOBALS, it must be
the first call made.

Errora:
CGS was already initialized.

:: The specified level is not supported.

TERMINATE-CORE()

This function releasea ●ll reaourcea
being used by CGS.

Errors:
CGS was not initialized.

;: A view surface has not been terminat-
ed.

3. A view surface has not been closed.

I)evice St’lection and Control

OPEN-VIEW-SLNFACE(SURFACE-NAME,
BUFFER-SIZL)

6.2.2

6.2.3

6.2.4

6.2.5

6.2.6

6.2.7

This function ●ssociates ● buffer
with the specified view surface.

Errors:
1. The view surface was ●lreadyopea.

CLOSE-VIEW-SURFACE(S~ACE-JJME)

This function disassociates a buffer
from the specified view surface.

Errorc:
1. The view surface was not opened.
2. The view surface was not deselected.

LINK-DEVICE-DRIVER(DEVICE-NAM,
DRIVER-ADDRESS)

This function generates the link to
thr specified device driver in the device
selection module.

Errors:
The device driver was ●lready linked.

;: Unrecognized device name.

UNLINK-DEVICE-DRIVER(DEVICE-NAME)

This function eliminates the link to
the specified device driver in the device
selection module.

Errors:
The device driver was not linked.

L Unrecognized device name.
3. A view surface assigned to the device

was not deselected.

INITIALIZE-VIEW-SURFACE (SURFACE-NAME,
DEVICE-NAME,DEVICE-OPTIONS)

This function associates a view sur-
face with a device driver. The device op-
tions are used to select specific device
capabilities. These options are used to
initialize the view surface.

Errors:
1. Tbe view surface was already initial-

ized.
2. Unrecognized device name.
3. The view surface was not opened.
4. The associated device driver was not

linked.

TEfUfINATE-VIEWWR.FACE(SUWACE-NM)

This function terminate the speci-
fied view surface.

Errors:
1. The view surface waa not initialized.
2. The view surface was not deselected.
?.). The view surface was not opened.
4, The associated device driver waa not

linked.

SELECT-VIEW-SURFACE(SURFACE-lJ~)

This function selects the specified
view surface for subsequent graphic out-
put ,

Errors:
The view surface was already selected.

;: The view surface was not initialized.
3. The view surface was not opened.
k. The associated device driver was not

linked.
5. A segment is ogee.

6.2.8 DESELECT-VIEW-SURFACE(SURFACE-NAME)

This functioo deselects the view sur-
face.

Ecrors:
1. The view surface was not selected.
2. A segaent is open.

ACf(NO~S

We would like to acknowledge Raymond Elliott
of LASL for the support and encouragement he gave
this project, as well as his ma-y comments ●nd
suggestions. We would also like to thank Jeanne
Hurford of LASL for word processing support.

We aluo acknowledge the joint effort concer-
ning graphics s’:andardization between Sandia
Laboratories at Allmquerque, the Air Force Weapons
Laboratory at Kirt..and Air Force Base, and IASL.

We are especially Indebted tO the many
members of the AC!l/SICGMI’H Graphic Standards
Planning Committee. Their report sets forth tbe
first real hope that a standard for computer

graphics softw~re will t.,: es’-ablished.

REFERENCES

1. AC?l . Stat& Report cf the Graphic Standards
Planrrlog Committee of ACtf/SIGGRAPH. Computer
Graphics 11, 3, Fall 1977.

2. Conley, U., et al. Basic Graphics Package In-
termediate File Format. LASL internal document,
Harch 1978.

3. General Purpose Graphics System. Katbolieke
Universiteit, Nijmegin, The Netherlands, 1975.

4. GINO-F User tianual. Computer Aided Design
Centre, Cambridge, England, 1974.

5. Kernighan, B.W. RATFOR- A Preprocessor for ●

Rational FORTRAN. Bell Laboratories, Flurray Hill,
NJ.

6. Kernighan, B.W., and Plauger, P.J. Software
Toois. Addizon-kesley, Reading, HA, 1976.

